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The mirror fluid method is proposed for simulating solid-fluid two-phase flow. The whole computational
domain is modeled as an Eulerian one for the fluid with a Lagrangian subdomain embedded in it. The boundary
condition is enforced implicitly on solid-fluid surface segments by mirror relations. Thus, the total flow is
solved in the one domain, in which the solid particle region is replaced with the virtual flow as the mirror
image of outside flow. The mirror fluid method is implemented to compute the motion of a rigid spherical or
elliptic particle in a Newtonian fluid for the purpose of method validation. The control volume formulation
with the SIMPLE algorithm incorporated is used to solve the governing equations on a staggered grid in a
two-dimensional coordinate system. A number of numerical experiments on falling particles are performed and
the computational results are in good agreement with the reported experimental data.

DOI: 10.1103/PhysRevE.71.036704 PACS numberssd: 83.85.Pt, 02.70.Bf

I. INTRODUCTION

Solid-fluid systems are encountered frequently in various
important industrial processes such as fluidization, slurry
transport, and permeation through packed beds. The motion
of particulates has been explored theoretically or experimen-
tally f1g and nowadays extensively via various computational
fluid dynamicssCFDd approaches.

In order to obtain accurate solutions including the micro-
structure of clustered solid particles in a Newtonian or non-
Newtonian fluid, Joseph and co-workersf2–6g have used the
direct simulation approach to solve the governing equations
for two phases by the body-fitted finite-element method. In
their simulations, the sedimentation or fluidization of single,
dozens of, and even hundreds of solid particles have been
simulated successfully. A distributed Lagrange multiplier and
fictitious domain method was also developed for simulating
the motion of rigid particles suspended in a fluidf4,5g. The
structured and regular meshes over an extended time-
independent domain including the regions occupied by the
particles were used to avoid repeated remeshing. The gov-
erning equations for the fluid were solved everywhere in the
domain and the motion of the rigid particles was enforced
using the distributed Lagrange multiplier method, whereas
the finite-element method is generally more intricate than the
finite-difference method and the continuity equation is not
easy to be satisfied for incompressible fluids.

Ryskin and Lealf7g provided a method for the generation
of an orthogonal boundary-fitted coordinate system, which is
found to be very efficient in the solution of some free bound-
ary problems with a deformable gas-liquid or liquid-liquid
interface f8–10g and of viscous flow past solid spheres
f11,12g, with good accuracy in enforcing the boundary con-
dition. However, it is very difficult to construct the orthogo-
nal curvilinear coordinates for complicated and seriously de-

formed interfaces and extend the mapping procedure to
three-dimensional flow domains. Unverdi and Tryggvason
f13g presented a front-tracking method on a Eulerian grid by
finite differences and the interface was explicitly tracked us-
ing a separate, unstructured grid that moves through a sta-
tionary grid. Good results of the direct simulation of bubbles
motion were reported, but the algorithm seems difficult to be
implemented for the need of repeatedly restructuring the
grid.

The immersed boundary method is also a useful algorithm
for simulating particulate flows by representing the role of
the solid surfacesusually through the boundary conditionsd
with a body force in the momentum balance equationexplic-
itly. A direct momentum-forcing algorithm was proposed by
Fadlunet al. f14g to overcome the disadvantage of the pre-
vious feedback forcing with two flow-dependent constants
used normally to represent a solid body. The interpolation
procedure for computing the momentum forcing inf14g was
then improved by Kimet al. f15g using a linear or bilinear
interpolation scheme and Gilmanovet al. f16g with the re-
construction algorithm using an unstructured triangular mesh
for satisfying the no-slip conditions on the geometrically
complex immersed boundaries. The flow past a solid sphere
and some other particulate flows have been well predicted by
these improved immersed-boundary methods. Recently the
lattice-Boltzmann method has also been applied to simulate
the particulate, especially multiparticle flowsf17,18g. Feng
and Michaelides f19g combined the lattice-Boltzmann
method and the immersed-boundary methodf14g to compute
the sedimentation of single and even 1232 spheres success-
fully in three-dimensional coordinates. Kajishima and
Takiguchi f20g applied a direct numerical simulationsDNSd
based on a two-way-coupling finite-difference scheme for
the simulation of the motion of solid particles through the
introduction of the volume-weighted average velocity close
to the solid-fluid interface.

Fedkiw and co-workersf21–25g designed the ghost fluid
methodsGFMd coupled with the level set approach and ap-
plied an “isobaric fix technique” to avoid a smearing jump of
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numerical quantities across the interface and to get continu-
ous profiles for the density, viscosity, pressure, entropy, and
velocity across the interface. This method combines a
Lagrangian code for tracking the interface with a Eulerian
scheme for advancing the fluid by populating cells next to
the interface with “ghost values”se.g., by extrapolation tech-
niquesd. A “ghost cell” is defined everywhere in the compu-
tational domain and each node is designated values of vari-
ables for real fluid and ghost values for the other fluid that
does not really exist at the point. The GFM coupled with the
level set approach was originally developed for multiphase
compressible flowf21g, then extended successfully to treat
shocks, deflagrations, detonations, and two-phase incom-
pressible flames and flowsf22–25g.

Although significant efforts have been made to model
multiphase flow, its numerical simulation is not fully suc-
cessful and very often semiempirical methods have to be
resorted to. Since the solid-fluid interfaces are translated
along with the motion of particles and the coupling between
the particles and fluid with jump interface conditions is
rather complicated, the problem of simulating the unsteady
motion and interaction of solid particles with a fluid is still
very tough for presently available computational fluid dy-
namics methods. The level set approach and other numerical
methods have been applied successfully for gas-liquid and
liquid-liquid flows, typically by using ad function or Heavi-
side function to couple the governing equations of the two
phases. As thed or Heaviside function formulations are ap-
plied for computing the Navier-Stokes equations, the numeri-
cal smearing of density, viscosity, or pressure across the in-
terface will arise and some source terms for modeling the
surface tension need to be added. However, these methods
cannot be directly extended to solid-fluid systems for it is
very difficult to assign suitable surface tension to solid-fluid
interfaces.

Inspired by the fictitious domain methodf3,4g and the
ghost fluid methodf21g, it is proposed that the domain of
solid particles is assigned suitable flow parametersse.g., ve-
locity and pressured so that a surface segment is eventually
subjected to the correct shear and normal forces on the fluid
side of the segment. In this way, the sum of the real stress
contributed by a real fluid and the fictitious stress by the
mirror fluid sdoes not really existd to the interface segment is
kept zero, as if the segment is an artificial one immersed in
the fluid. Otherwise, an infinite acceleration with no physical
meaning will result onto the infinitely thin surface segment
with zero mass. Thus, the solid surface seems just nonexist-
ent and the whole domain including the real fluid and the
inside mirror fluid can be solved altogether by a set of equa-
tions. At the same time, the mirror fluid should have the
same values of density and viscosity as the real fluid, and the
surface tension becomes irrelevant to the solution of the
Navier-Stokes equations. The problem of interface boundary
conditions including some jump conditions is thus replaced
by that of specifying the fictitious parameters to the mirror
fluid in the solid domain. In comparison to other ways of
representing moving solids on a moving mesh, such as the
finite-element method and the orthogonal boundary-fitted co-
ordinate method, a usual fixed Eulerian grid in this method is
used for the fluid without the need of remeshing with the

subdomain occupied by the particle taken as a fictitious one.
In this paper, we attempt to utilize the advantages of the
algorithm—namely, the mirror fluid method—to give a com-
paratively robust and accurate finite-difference scheme for
solid-liquid flows by solving the governing equations of the
fluid phase without using thed or Heaviside functions. The
motion of rigid solid particles in the laminar flow regime is
numerically simulated and compared with the reported ex-
perimental data to validate the new algorithm.

II. MATHEMATICAL FORMULATION

A. Governing equations

The unsteady motion of a solid particle in a Newtonian
liquid is considered as a typical example for the validation of
the mirror fluid method with following assumptions:s1d the
fluid is viscous and incompressible,s2d the physical proper-
ties of the fluid and solid are constant,s3d the two-phase
solid-fluid flow is axisymmetric or two dimensional, ands4d
the flow is laminar.

The velocity usx ,td and the pressurePsx ,td subtracted,
the contribution of gravity in the fluid are governed by the
continuity and Navier-Stokes equations in the following
forms:

= ·u = 0, s1d

r fS ]u

]t
+ u · = uD = = · s, s2d

wherer f is the density of the fluid andt is the time. Since the
fluid is Newtonian, the stress tensors takes the form

s = − PI + t, s3d

in which t is the stress tensor defined as

t = m ff=u + s=udTg, s4d

wherem f is the viscosity of the fluid.
Suppose a rigid sphere with radiusR falls by gravity in a

fluid. The equations of motion are nondimensionalized by
introducing characteristic scales:L=2R for length, Vc

=Î2Rg for velocity,L /Vc for time, andr fVc
2 for pressure and

stress.g is the gravitational accelerations9.81 m s−2d. In a
two-dimensional coordinate system, the equations for fluid
mass and momentum conservation are then expressed in
terms of dimensionless variables as
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where r ;1 for Cartesian coordinates,r ;y for cylindrical
coordinates, and curly brackets indicate the term present only
in cylindrical coordinates.x, y, r , u , u, v, andp are defined
to be the dimensionless axial coordinate, radial or transverse
coordinate, radial coordinate, time, axial velocity compo-
nent, radial or transverse velocity component, and pressure,
respectively. The dimensionless groupNRe is the Reynolds
number and expressed as

NRe;
r fLVc

m f
= s2Rd1.5g0.5r f

m f
. s8d

The rotating, tilting, and deforming of a rigid particle fall-
ing in a Newtonian fluid are absent in an axisymmetric case.
Therefore, the motion of a solid particle with the densityrs
satisfies Newton’s law:

Msa = F + G, s9d

a =
dU

dt
, s10d

U =
dxP

dt
, s11d

wherexP, U, anda are the position, velocity, and accelera-
tion vectors of the particle. For a solid sphere, the mass of
the particle is

Ms =
4

3
pR3rs. s12d

F is the force vectors exerted on the particle by the fluid and
G by gravity:

F =E E
GP

s ·n dG, s13d

G =
4

3
pR3srs − r fdg, s14d

whereg is the acceleration vector of gravity. In Eq.s13d, GP
is the surface of the particle andn is the outward unit vector
normal to the particle surface. In addition, the no-slip condi-
tion is imposed on the solid-fluid boundary—i.e.,uG=U—to
couple the governing equations of motion of fluid and the
rigid particle, whereuG is the velocity vector of fluid on the
fluid-solid interface.

After the nondimensionalization of Eq.s9d using the same
characteristic scales for the fluid, we have

p

6
r2ã =E E

GP

S− pI +
1

NRe
t̃D ·ndG +

p

6

1

NFr
sr2 − r1dg̃,

s15d

where t̃ is the dimensionless form of the stress tension de-
fined in Eq. s4d, r1 is the dimensionless fluid density and
equal to 1,r2 is the dimensionless density of the particle
sr2=rs/r fd, and the Froude number is expressed asNFr

;Vc
2/Lg. In two-dimensional coordinates the dimensionless

vectorsã and g̃ can be written explicitly as

ã = Sax

ay
D = SdUx/du

dUy/du
D , s16d

g̃ = Sgx

gy
D , s17d

whereUx andgx are the dimensionless velocity and gravita-
tional acceleration of the particle in the axial directionsxd,
andUy andgy those at the radial or transverse directionsyd.

Given another case of sedimentation of an elliptic solid
particle in a two-dimensional channel, the governing equa-
tions of rotation have to be included in the above equations.
The torque imposed on an ellipse by the fluid is given by

Fm =E E
GP

sx − xPd 3 s ·n dG. s18d

Then the angular velocityv of the solid particle rotation and
the orientation anglea of the ellipse can be calculated by the
following equations:

I
dv

dt
= Fm, s19d

v =
da

dt
s20d

whereI is the rotational moment of inertia of the particle.

B. Mirror fluid method

The basic idea of the mirror fluid method is to take the
whole domain as a Eulerian one for the fluid with a Lagrang-
ian subdomain embedded; i.e., a solid-fluid flow problem
with geometric complexity domain is resolved on a larger
and regular domain, including a mirror fluid domain which is
originally occupied by the solid. In this aspect, the mirror
fluid method and the fictitious-domain methods have the
same advantages that a fixed and regular mesh can be applied
for the entire computation without repeated remeshing or
using boundary-fitted coordinates. A simple finite-difference
method used here instead of the finite-element method and a
complicated weak formulationf3,4g. The no-slip boundary
condition is enforced implicitly on solid-fluid surface seg-
ments by mirror relations. Therefore, to make a surface seg-
ment subjected to a zero net force, the key is to guarantee the
shear rates across the surface be the same magnitude but with
opposite direction. This may be implemented by taking the
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inside flow in the subdomain occupied by the solid particle
si.e., the mirror fluid domaind as the flipped mirror image of
the outside flow in the real fluid phase at the same surface
segment or, in other words, by rotating the outside flow field
su−Ud and pressure field by 180° around the surface seg-
ment sas shown in Fig. 1d.

Unlike the linear extrapolation of the ghost fluid method
f21,26g, the flow parameterssu and Pd are defined by the
mirror relations. Thus, the key step of the mirror fluid
method is to accurately specify the flow parameters inside
the mirror fluid domain, in which the variable value at each
node corresponds to that of a point in real fluid by the mirror
relations. The following formulations are derived only in
two-dimensional Cartesian or cylindrical coordinates for a
single solid particle moving in a fluid as a typical example,
while this is easy to be extended to a three-dimensional
space and straightforward to multiple-particle–fluid systems.

As depicted in Fig. 1, we can find the mirror location of
AsxA,yAd in the real fluid region corresponding to node
BsxB,yBd in the mirror fluid domain in terms of a distance
function defined as in the level set approachf27,28g. The
signed algebraic distance function denoted asf, being posi-
tive in the continuous fluid phase, negative in the solid
phase, and zero at the solid-fluid interface, to facilitate the
mirror calculations. After the particle is advanced by a time
step,f can be redesignated with the known center position
of the particle. The unit normal vector to the interface in Eqs.
s13d and s15d is denoted as

n =
=f

u = fu
. s21d

In two-dimensional Cartesian or cylindrical coordinates, the
above equation is expanded as

n = Snx

ny
D =1

]f/]x
Îs]f/]xd2 + s]f/]yd2

]f/]y
Îs]f/]xd2 + s]f/]yd2

2 s22d

and can be calculated at the nodes immediately close to the
solid-fluid interface. So the unit normal vector passing
throughB to the interface is thus calculated:

nB = SnxB

nyB
D = S =f

u = fuDB

. s23d

In Fig. 1, the straight line alongnB passing throughB is

x − xB

nxB
=

y − yB

nyB
. s24d

So the coordinates ofA mirrored withB can be decided by
solving the following equation set of Eqs.s25d and s26d
coupled with the constraint in Eq.s27d:

xA − xB

nxB
=

yA − yB

nyB
, s25d

sxA − xBd2 + syA − yBd2 = s2fBd2, s26d

fAfB ø 0 sif fB ø 0, thenfA ù 0d. s27d

As shown in Fig. 2, the points denoted by solid circle
symbolssAd are one-to-one mirror images of the nodes in a
solid particle denoted by open circle symbolssBd. Then the
fictitious velocity and pressure of nodeB in the mirror fluid
are obtained easily:

uB = − suA − Ud + U = 2U − uA, s28d

PB = PA. s29d

Be aware that for a rotating solid particle, the velocity at the
particle-fluid interface—i.e.,U—should be replaced byU
+v3 sx−xPd.

Such specification ensures that the shear and normal
stresses on the two sides of the solid-fluid interface are with
the same magnitude but opposite direction. The density and
viscosity of the mirror fluid are designated as simply equal to
those of the real fluid. As shown in Fig. 1, in the mirror
relation the extension of velocity across the curved solid-
fluid interface is continuous. The updated velocity field re-
mains continuous across the particle surface; i.e., iffB is
unlimitedly close to zero,uA<U can be derived from Eq.
s28d. Therefore, if theu at f=0 sinterfaced is essentially the
constantU within numerical error, then the sphere remains
nondeformable and the no-slip boundary condition is auto-
matically satisfied. In this way, we can update the fluid ve-
locity field including the mirror fluid by the Navier-Stokes
equations2d at every node in the entire computational do-

FIG. 1. Schematic diagram of the solid-fluid interface for the
mirror fluid method.

FIG. 2. Sketch map of a typical mirror relation between the
nodes in a solid particle and the corresponding mirrored nodes in a
real fluid.
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main with the solid-fluid interface boundary condition en-
forced implicitly. The motion of the solid particle is then
computed by Eq.s9d using a Lagrangian scheme. Thus, one
can compute solutions to solid-fluid two-phase flow prob-
lems replaced by solving two single-phase flows. Last, it is
noted that only a band of several mirror nodes close to the
interface is actually necessary by this novel algorithm. All
the nodes in the particle domain whose neighbor nodes are
all in the same domain are actually irrelevant to the solution
and can be blocked out from the computation as suggested
by Patankarf29g.

In f26g, the ghost fluid methodf21g was used to impose
the boundary condition of velocity on a solid object without
including the pressure boundary condition. A distance func-
tion c si.e., level set functiond was also defined to track the
interface, and the ghost velocity in the solid domain was
estimated by a linear extrapolation and usuallyucfluidu
Þ ucghostu. But in the mirror fluid method we setufAu= ufBu
and use a definite one-to-one mirror relation; thus, the loca-
tion of A in the fluid mirrored withB in the solid can be
easily found by solving the explicit formulation of Eqs.s25d
and s26d instead of the more costly iteration equation
]u /]tg±n ·=u=0 with Courant-Friedrichs-LeweysCFLd
number.1. In f26g, only a first-order accuracy for the itera-
tion equation was obtained. Even a high-order semi-
Lagrangian schemesthe CIP methodd was adopted, so the
accuracy of all numerical simulations is first order. In fact, if
we chooseucfluidu= ucghostu, Eq.s7d in f26g is equivalent to Eq.
s28d of this paper.

In order to further compare the difference of both meth-
ods, the same numerical samples—i.e., two-dimensional
Poiseuille and Couette flow problems—are computed by the
mirror fluid method. The relative deviation is also defined
as E= uusim−uexactu / uuexactu. The theoretical solution of the
Poiseuille flow isuexact=s1/2mds−dp/dydsax−x2d, wherea is
the wall widths0.5a=3.8 mmd. The exact solution of veloc-
ity for the Couette flow isuexact=vr, wherev is a constant
angular velocity of rotationsv=1.0 s−1d and r is the radius
sthe radius of the cylinder is 4.3 mmd. As shown in Table I,
for a flat boundarysPoiseuille flowd, the computational ac-
curacy of velocity for the mirror fluid method is nearly sec-
ond order and between first and second order for a curved
boundarysCouette flowd, both being better than the first-
order accuracy inf26g. Since the divergence-free condition
can be satisfied more easily, a higher accuracy is obtained for
the Poiseuille flow.

It is necessary here to comment on the immersed-
boundary methodf14–16,19g, by which a body force term in

different forms is added to the Navier-Stokes equationsex-
plicitly to make the solid-fluid interface boundary conditions
enforced. A linear interpolation procedure with lower than
second-order accuracy is usually adopted and a substantial
task for computing the intersection points nearby the moving
interface is usually needed. Inf20g, another interpolation
method by the volume-weighted average was employed to
determine the velocity in the interface field. All the above
interpolation schemes are based on the assumption that the
velocity across the boundary is linear. However, the mirror
fluid relations rather than interpolation introduced in this
work need no sucha priori assumption. Moreover, the
boundary conditions areimplicitly satisfied in the mirror
fluid method without modifying the physical momentum bal-
ance equations. The advantages of our method seem to be
compensated for somewhat because a few iterations on the
mirror relations are needed for each computational time step,
when the solid body velocity is also part of the solution for
the implicit time schemessee Sec. II C 2d.

C. Computational scheme

1. Method for numerical solution

The control volume formulation with the power-law
scheme described by Patankarf29g is adopted to solve Eqs.
s6d ands7d for the fluid. A typical control volume for velocity
componentu in thex direction in a staggered grid is denoted
by the shaded area in Fig. 3. Equations6d is integrated over
the control volume centered atw, and an algebraic equation
for the central nodew involved with four neighboring nodes
e, f , g, andh is obtained. The momentum equations7d for
velocity componentv is handled in a similar manner. In or-
der to improve convergence and reduce solution costs, the
SIMPLE algorithmf29g is adopted to compute the velocity and
pressure fields. The discrete momentum and pressure-
correction equations are left out for conciseness of this paper.

In order to ensure variables more accurately interpolated
and revolved, a double fine grid detailed by Yang and Mao
f27g is applied. When the motion of a bubble or droplet was
simulated by a level set approach the inevitable “parasitic”
surface currents that arise from errors in the surface force
calculation were suppressed by this improvementf27g. As
depicted in Fig. 3, the coarse-grid cells are shown with solid
lines and the double fine-grid cells are demarcated by both
solid and dashed lines. If aNx3Ny grid is used for the ve-
locity and pressure solution, a 2Nx32Ny one is used forf
specification.

TABLE I. Comparison of the relative error between the mirror
fluid method and the method inf26g. EP is for Poiseuille flow at
x=0 andEC for Couette flow atr =4.0 mm.

Grid spacing 1 mm 0.5 mm 0.25 mm

EP Yokoi f26g 2.16310−2 1.03310−2 4.67310−3

This work 8.35310−3 1.99310−3 5.43310−4

EC Yokoi f26g 3.75310−2 2.00310−2 1.23310−2

This work 1.79310−2 6.50310−3 2.81310−3

FIG. 3. The control volume ofu at nodew.
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As suggested by Figs. 1 and 3, the solid-fluid surfaceGP
consists of surface segments formed by the intersection of
the particle surface with the grid lines, and the evaluation
of surface forces may be done by integration over these
segments. For this purpose, the location and variables of
two end pointsi and i +1 of segmenti are determined by
linear interpolation between grid nodes. In two-dimensional
Cartesian or cylindrical coordinates, the dimensionless force

vector F̃ imposed on the particle by the fluid stress can be
integrated along the solid-fluid interface as

F̃ =E E
GP1S− p +

2

NRe

]u

]x
Dnx +

1

NRe
S ]u

]y
+

]v
]x
Dny

1

NRe
S ]u

]y
+

]v
]x
Dnx + S− p +

2

NRe

]v
]y
Dny
2dG

=E E
GP

E dG, s30d

where the vectorE is the average of the stress at two ends of
segmenti when Eq.s30d is applied for surface integration of
fluid stress—i.e.,E=sEi +Ei+1d /2. The surface area element
DG in discrete form is

DG =
r i+1 + r i

2
Îsxi+1 − xid2 + syi+1 − yid2. s31d

If the grid is adequately fine, the error of integrated forces
would be acceptable. A similar integration method is also
applied to calculate the torqueFm.

The dimensionless time stepDu must satisfy the Courant-
Friedrich-Lewy conditions and also the restrictions due to
gravity and viscous terms to make the numerical procedure
stable and convergentf28,30g:

Duv =
3

14
h2NRemin S rsxd

msxd
D , s32d

Duc = min S h

uuuD , s33d

Du = 0.5 minsDuv,Ducd, s34d

whereh is the mesh size of velocity-pressure grid and usu-
ally we takeDx=Dy=h.

2. Numerical procedure

By the mirror fluid method, the main calculation steps of
solid-fluid flows are summarized as follows:

Step 1. Initialize the flow fieldsu ,U ,Pd ,a,v ,a, physical
parameterssdensity and viscosityd, andf as the signed nor-
mal distance to the interface.

Step 2. Assume the velocity of the solid particle beU at
the end of a time incrementDt:

U = U0 + a0Dt, s35d

whereU0 anda0 are the velocity and acceleration of the solid
particle at the end of the former time step.

Step 3. Calculate the locationsAd in the real fluid mirrored

with any nodesBd in the subdomain occupied by the solid
particle through solving the equation set of Eqs.s25d and
s26d. ObtainfA, uA, andPA by interpolation and assign val-
ues ofuA andPA outside the particle to the mirror fluidsuB
and PBd inside the particle with the surface values as the
pivots by Eqs.s28d and s29d.

Step 4. Solve the mass and momentum conservation equa-
tions of fluid in the whole domain by theSIMPLE algorithm
with the interface boundary condition implicitly enforced by
the mirror fluid method.

Step 5. Calculate the total drag force ofF exerted by the
liquid on the particle and the body force ofG by the external
field. Then calculate the accelerationa by solving the force
balance Eq.s9d of the particle.

Step 6. Estimate the particle velocityU* at the end of
current time step according to the new acceleration value:

U* = U0 + 1
2sa0 + adDt. s36d

Step 7. CompareU* and U. If U* =U smeaninga=a0d,
and go on to the next time step of the simulation. If not
equal, go back to step 2 with suitably adjusteda0, typically
as

a0
sn+1d = a0

snd + 1
2sa − a0

sndd, s37d

until the value ofU converged during the iterationssi.e., U*

approaches a convergent valued. If the solid particle rotates,
use the converged velocity fieldu and U to calculate the
angular velocityv and orientation anglea of the particle by
Eqs.s18d, s19d, ands20d.

Step 8. Move the particle center to a new position with the
converged surface velocities and respecifyf of fluid and
solid particle. Keep theu andP values for nodes in the fluid
and discard these in the particle according to the renewed
signed distance functionf.

Step 9. Let U0=U , u0=u , a0=a, v0=v, anda0=a, and
repeat steps 2–8 for the next time step.

III. NUMERICAL RESULTS AND DISCUSSION

To demonstrate and validate the applicability and robust-
ness of the above-mentioned numerical algorithm, we con-
sider an impressible Newtonian fluid bounded in an ad-
equately wide cylindrical column with free-slip boundary
conditions imposed at the column wall and a rigid spherical
particle that moves freely in the fluid. Typically we solve the
solid-fluid flow in a computational domainV=hsx,yd u0øx
ø45R, 0øyø36Rj to assure no wall effect. In case of par-
ticle rotation, the sedimentation of an elliptic particle in a
two-dimensional channel is simulated.

A. Convergence test

A number of numerical experiments with different particle
radius, viscosity, and density in wide range of Reynolds
number in axisymmetrical and laminar two-phase flow are
carried out. The effects of grid on calculated velocities of the
spherical particle and fluid are presented in Figs. 4, 5, and 6.
Grids of 50340, 100380, 1503120, 2003160, 250
3200, and 3003240 are used to test the convergence of the
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particle motion as a function of timessee Fig. 4d. Figure 5
depicts the distribution of interfacial velocity along the par-
ticle surface against the azimuthal angleb measured from
the particle rear stagnant point. The real axial velocity is a
constant at the whole surface, and the simulation velocity

component shows certain fluctuations. We use the coefficient
of variationCV to characterize quantitatively the deviation of
the calculated interfacial velocity from the ideal value as
shown in Fig. 6.CV is defined as

CV =
1

uw̄u
Î 1

n − 1o
i=1

n

swi − w̄d2, s38d

wherewi is the interfacial velocity either in axial direction
sud or in radial or transverse directionsvd at every intersect-
ing point of the particle surface with the grid lines, and the
average velocityw̄ with total numbern of interfacial veloci-
ties is computed by

w̄ =
1

n
o
i=1

n

wi . s39d

We can find the simulation velocities at the solid-fluid inter-
face gradually approach to constant values with the increase
of the total number of nodes. The constant velocityu at the
curved solid-fluid interface also validates the proposed mir-
ror relation can guarantee the no-slip condition and no defor-
mation of the rigid particle.

Table II compares the predicted Reynolds numbers
sNResim

* d of the sphere at steady-state motion withNRecor

* cal-
culated from a correlation recommended by Cliftet al.

FIG. 4. Grid independence test: dimensionless velocity of par-
ticle as a function of dimensionless timesR=0.21 mm,r f

=1000 kg m−3, rs=2000 kg m−3, m f =1.0310−3 Pa sd.

FIG. 5. Profiles of the dimensionless interfacial velocity along
the particle surface with different computational gridssthe same
simulation conditions as in Fig. 4d. sad Interfacial velocity at axial
directionsud. sbd Interfacial velocity at radial or transverse direction
svd.

FIG. 6. Coefficient of the variation of the axial velocitysud
versus dimensionless time with different computational gridssthe
same simulation conditions as in Fig. 4d.

TABLE II. Convergence studysthe same simulation conditions
as in Fig. 4d.

Grid NResim

* NRecor

* D CV of u CV of v

50340 22.03 18.55 18.76% 5.79% 3.49%

75360 20.37 18.55 9.81% 4.01% 2.59%

100380 19.71 18.55 6.25% 3.02% 2.06%

1503120 19.14 18.55 3.18% 2.02% 1.45%

2003160 18.82 18.55 1.46% 1.51% 1.11%

2503200 18.62 18.55 0.38% 1.20% 0.90%

3003240 18.57 18.55 0.11% 1.00% 0.76%
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sTable 5.3, p. 114d f1g. The real Reynolds numberNRe
* of the

particle is defined as

NRe
* =

r fLU

m f
, s40d

whereU is the real terminal velocity of the spherical particle.
The correlation for 12.2,NRe

* ø6.353103 and 580
,NDø1.553107 is given by

log10 NRe
* = − 1.81391 + 1.34671A − 0.12427A2

+ 0.006344A3, s41d

whereA=log10 ND and the dimensionless numberND is

ND =
4

3m f
2r furs − r fugL3. s42d

For other two ranges ofND, the correlations that will be
involved in the following sections are

NRe
* =

ND

24
− 1.75693 10−4ND

2 + 6.92523 10−7ND
3 − 2.3027

3 10−10ND
4 , s43d

used for the range ofNRe
* ø2.37 andNDø73, and

log10 NRe
* = − 1.7095 + 1.33438A − 0.11591A2, s44d

for the range of 2.37,NRe
* ø12.2 and 73,NDø580. The

relative deviation between the predicted Reynolds number by
the mirror fluid method and the value from correlations41d
and s43d, or s44d is calculated by

D = sNResim

* − NRecor

* d/NRecor

* 3 100 % . s45d

As the grid is refined, the deviation of the Reynolds num-
ber of the spherical solid particle at steady-state motion de-
creases graduallyssee Table IId and a grid with 2503200
nodes is sufficient for spatial computational accuracy and is
adopted for the subsequent simulations.

B. Comparison of the Reynolds number and drag coefficient

In this section, we compare the predicted Reynolds num-
bers and drag coefficients of falling spherical particles in
stagnant fluid with the experimental data to examine the ro-
bustness of the novel mirror fluid method. As shown in Fig.
7 and Table III, the numerical simulated Reynolds numbers
of falling particles are in good agreement with the values
calculated from the typical empirical correlations of Eqs.
s41d, s43d, ands44d proposed by Cliftet al. f1g with relative
deviation mostly below 5%. As shown in Fig. 8 and Table
IV, the comparison of drag coefficients of a sphere in steady-
state motion is also rather satisfactory. The values of drag
coefficientCd,cor are calculated from three experimental cor-
relations also recommended by Cliftet al. sTable 5.2, p. 112d
f1g:

Cd =
3

16
+

24

NRe
* , if NRe

* , 0.01, s46d

Cd =
24

NRe
* f1 + 0.1315sNRe

* ds0.82−0.05 log10 NRe
* dg,

if 0.01, NRe
* ø 20, s47d

FIG. 7. Plot of the Reynolds number againstND for the motion
of a spherical particle sR=0.21 mm,r f =1000 kg m−3, rs

=2000 kg m−3, m f =1.0310−3 Pa sd.

TABLE III. Comparison of the Reynolds numbers of solid
particles.

ND NResim

* NRecor

* D

6.695310−3 2.887310−4 2.789310−4 3.51%

2.259310−2 9.599310−4 9.413310−4 1.98%

5.356310−2 2.209310−3 2.231310−3 −0.986%

0.1046 4.286310−3 4.356310−3 −1.61%

0.3530 1.455310−2 1.469310−2 −0.953%

13.08 0.4969 0.5163 −3.76%

44.13 1.522 1.555 −2.12%

64.24 2.110 2.131 −0.985%

104.6 3.406 3.255 4.64%

353.0 9.129 8.667 5.33%

836.8 17.13 16.55 3.50%

968.7 18.52 18.55 −0.162%

1.9473103 30.90 31.41 −1.62%

2.1753103 34.73 34.07 1.94%

2.8243103 40.75 41.14 −0.95%

3.1163103 43.67 44.13 −1.04%

3.5913103 49.49 48.78 1.46%

4.4853103 56.22 56.98 −1.33%

5.5163103 65.98 65.70 0.426%

5.9693103 69.26 69.33 −0.101%

9.5323103 97.00 94.83 2.29%

1.3083104 120.6 116.6 3.43%

1.7403104 146.7 140.0 4.79%

2.2593104 177.1 165.0 7.33%
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Cd =
24

NRe
* f1 + 0.1935sNRe

* d0.6305g, if 20 ø NRe
* ø 260.

s48d

The relative deviation between the predicted drag coefficient
sCd,sim= 4

3LgU−2r f
−1urs−r fud by the mirror fluid method and

the value from the above correlations is calculated by

Dc = sCd,sim− Cd,cord/Cdd,cor3 100 % . s49d

The numerical simulation results ofCd,sim coincide with
Cd,cor rather well except the cases ofNRe.100, for which the
relative error is about 10%. A similar trend is observed for
the comparison of Reynolds numbers of falling particles with
different radii. Inf4g sTables 8.3–8.6d, Glowinski et al. have
also simulated the motion of a ball falling in an incompress-
ible viscous fluid by a fictitious domain approach and the
finite-element method and compared with the experimental
data from Clift et al. f1g. The relative errors of terminal
velocities for Reynolds numbers of 38.1, 78.3, 84, and 118
are 12%, 17%, 13.4%, and 15.2%, respectively. The possible
reason for the larger prediction deviation from the experi-
mental data is that the solid particle may oscillate at high
Reynolds numbers, typically when the Reynolds number of a
falling sphere is about larger than 130. In this case, the axi-
symmetric assumption is not suitable and three-dimensional
simulation should be performed for more accurate predic-
tion.

C. Comparison of the wake length

Besides the investigation of the drag for the motion of a
rigid particle in a fluid, the flow pattern at different Reynolds
numbers has also been concerned and the wake length is one
of the important parameters to characterize the solid-fluid
flow.

The velocity field around a falling solid sphere computed
by the mirror fluid method is shown in Fig. 9 as a typical
example. The velocity vector map in Fig. 9sad is plotted in
the stationary frame, but that in Fig. 9sbd is in the coordinates
fixed at the center of the falling spherical particle, where the
wake behind the particle is obvious. According to the veloc-
ity field in Fig. 9, we can also explain the reason of the
fluctuation of the interfacial velocity along the particle sur-
face as shown in Fig. 5. The interfacial velocity of the node
nearby the rear of the particle is close to a constant value for
the nearly same magnitude of velocities of the neighboring
nodes. However, the velocity gradients at the interface nodes
near to the front nose of the particle are much larger than
other nodes, so the corresponding interfacial velocities at
these nodes fluctuate relatively seriously.

Figure 10 presents the computed stream function contours
around the falling particle with different Reynolds numbers
reaching steady state at sufficiently largeu. WhenNRe

* is very
low s18.52d, the flow around the particle is perfectly laminar
and no vortex ring appears in the wake. As the Reynolds
number is increased, the stream function contours at the rear
of the particle become more flexuous. WhenNResim

* is 69.26,
the circulating vortex emerges in the neighborhood of the
rear stagnation point. With the further increase of the Rey-
nolds number, the vortex ring grows in size and becomes
more and more elongated.

In Fig. 11, the wake lengths at different Reynolds num-
bers obtained from the simulations by the mirror fluid
method are compared with Taneda’s experimental dataf31g.
The agreement seems satisfactory except the cases of very

FIG. 8. Plot of the drag coefficient against Reynolds number of
a falling spherical particlesthe same simulation conditions as in
Fig. 7d.

TABLE IV. Comparison of the drag coefficients of solid
particles.

NResim

* Cd,sim Cd,cor Dc

2.887310−4 8.0313104 8.3123104 −3.38%

9.599310−4 2.4523104 2.5003104 −1.92%

2.209310−3 1.0973104 1.0863104 1.01%

4.286310−3 5.6943103 5.6003103 1.68%

1.455310−2 1.6683103 1.6543103 0.846%

0.4969 52.96 51.84 2.16%

1.522 19.04 18.68 1.93%

2.110 14.43 14.10 2.34%

3.406 9.017 9.497 −5.05%

9.129 4.236 4.535 −6.59%

17.13 2.853 2.990 −4.58%

18.52 2.823 2.847 −0.843%

30.90 2.039 2.084 −2.16%

34.73 1.804 1.943 −7.15%

40.75 1.701 1.769 −3.84%

43.67 1.634 1.700 −3.88%

49.49 1.466 1.583 −7.39%

56.22 1.419 1.475 −3.80%

65.98 1.267 1.351 −6.22%

69.26 1.244 1.317 −5.54%

97.00 1.013 1.104 −8.24%

120.6 0.8998 0.9894 −9.06%

146.7 0.8087 0.8988 −10.0%

177.1 0.7200 0.8212 −12.3%
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high Reynolds numbers when the zigzag motion of falling
particles with an unsteady wake needs to be dealt with three-
dimensional simulation. The predicted wake lengths are also
very close to the simulated results by Mao and Chenf12g
using an orthogonal, boundary-fitted coordinate system.

D. Sedimentation of an elliptic particle with rotation

To further evaluate the reliability of the mirror fluid
method, a single ellipse settling in a Newtonian fluid under
gravity in a two-dimensional vertical channel is simulated
under the same conditions as used by Huanget al. f5g. The

elliptic particle with the aspect ratioRa/Rb=1.5, whereRa is
the major axis andRb the minor axis, rests initially at the
channel center and the major axis tilts 135° with respect to
the horizontal direction. For the close wall sedimentation, the
width W of the channel is 5 times the length of the major
axis. The inflow boundary of the computational domain is
placed 30Ra ahead of the ellipse and the outflow boundary is
40Ra behind the particle. Inf5g, the orientation angle and
trajectory of an ellipse with two Reynolds numbers ofNRe

*

=0.31 and NRe
* =0.82 were simulated directly using the

Galerkin finite-element method and an arbitrary Lagrangian-
Eulerian moving mesh technique. The authors found that in a
narrow channel the lubrication pressure turns the ellipse ver-
tical and executes a damped oscillation as it drifts to the
channel center for the case of lower Reynolds numbersNRe

*

=0.31d, while for the case ofNRe
* =0.82 the stagnation pres-

sure dominates and the ellipse turns horizontal as it migrates
to the channel center.

In this computation, a nonuniform grid with 82397
nodes is adopted. As shown in Fig. 12, very reasonable

FIG. 9. Velocity field around a falling sphere in a fluidsND

=1.7403104, NResim

* =146.7,u=21.04d.

FIG. 10. Influence of the Reynolds numberssNRe
* d on stream

function contour maps for the motion of a rigid sphere in a fluid.sad
ND=968.7,NResim

* =18.52,u=18.05. sbd ND=5.9693103, NResim

*

=69.26,u=13.44.scd ND=1.7403104, NResim

* =146.7,u=21.04.

FIG. 11. Comparison of predicted wake length with experimen-
tal datasLw=S/Ld.
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agreements of the particle orientation angles and trajectories
between the mirror fluid method and the finite-element
method by Huanget al. are found. Similar simulated results
by the lattice-Boltzmann methodf17g with a finer grid of
1013700 are also compared in Fig. 12.

IV. CONCLUSIONS AND FUTURE WORKS

We have presented a mirror fluid method for numerical
simulation of solid-fluid flows. In this method we take the

entire computational domain as a fixed Eulerian one without
using a body-fitted coordinate system and assign suitable
flow parameters to the solid particle domain by mirror rela-
tions to ensure the surface segment subjected to zero net
shear and normal forces and the fluid-solid boundary condi-
tions enforced implicitly; meanwhile, the motion of solid
particles is calculated using a Lagrangian numerical scheme.
This algorithm has the advantages of solving multiphase
flow by a set of coupled equations, eliminating smear of
density and other variables profiles across the interfaces, us-
ing a simple finite-difference method for discretization and
adopting a fixed Cartesian grid without need of remeshing.

A number of numerical examples were studied in a two-
dimensional coordinate system. TheSIMPLE scheme and the
control volume formulation are used for solving the govern-
ing equations for the motion of a rigid spherical or elliptic
particle in a fluid. The Reynolds number, drag coefficient,
and wake length of real spherical particles are well predicted
as verified against the acknowledged experimental data. The
orientation angle and trajectory of an ellipse settling in a
fluid are also well predicted as compared with the reported
simulation results. These numerical tests indicate that the
mirror fluid method is simple, robust, and effective in simu-
lating real solid-fluid flows.

The mirror fluid method can be extended to other more
challenging particle flow problems with less restriction, es-
pecially when complicated and irregular solid-fluid inter-
faces are involved. In future work, we will use the mirror
fluid method to compute the effects of irregular side walls,
motion of other nonsphericalse.g., slenderd solid particles
with rotation or tilting in a Newtonian or non-Newtonian
fluid. Extension to simulate three-dimensional solid-fluid
flow at high Reynolds numbers will also be tested for further
validity and application of this novel numerical algorithm.
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