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Mirror fluid method for numerical simulation of sedimentation
of a solid particle in a Newtonian fluid
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The mirror fluid method is proposed for simulating solid-fluid two-phase flow. The whole computational
domain is modeled as an Eulerian one for the fluid with a Lagrangian subdomain embedded in it. The boundary
condition is enforced implicitly on solid-fluid surface segments by mirror relations. Thus, the total flow is
solved in the one domain, in which the solid particle region is replaced with the virtual flow as the mirror
image of outside flow. The mirror fluid method is implemented to compute the motion of a rigid spherical or
elliptic particle in a Newtonian fluid for the purpose of method validation. The control volume formulation
with the siMPLE algorithm incorporated is used to solve the governing equations on a staggered grid in a
two-dimensional coordinate system. A number of numerical experiments on falling particles are performed and
the computational results are in good agreement with the reported experimental data.
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I. INTRODUCTION formed interfaces and extend the mapping procedure to

Solid-fluid systems are encountered frequently in variou three-dimensional flow domains. Unverdi and Tryggvason
y q y ;13] presented a front-tracking method on a Eulerian grid by

important industrial Processes such as fluidization, slurr inite differences and the interface was explicitly tracked us-
transport, and permeation through packed beds. The motigp

¢ iUl has b lored th call X g a separate, unstructured grid that moves through a sta-
of particulates has been explored theoretically or experimeny ., grid. Good results of the direct simulation of bubbles
tally [1] and nowadays extensively via various computationa

otion were reported, but the algorithm seems difficult to be

fluid dynamics(CFD) approaches. . . . . implemented for the need of repeatedly restructuring the
In order to obtain accurate solutions including the micro- rid.

structure of clustered solid particles in a Newtonian or non-
Newtonian fluid, Joseph and co-worké¢gs-6] have used the for

direct simulation appraach to.solve_ the governing equationfhe solid surfac€usually through the boundary conditions
for two phases by the body-fitted finite-element method. INyith a body force in the momentum balance equataplic-
their simulations, the sedimentation or fluidization of single,my_ A direct momentum-forcing algorithm was proposed by
dozens of, and even hundreds of solid particles have begg, gt 4, [14] to overcome the disadvantage of the pre-
simulated successfully. A distributed Lagrange multiplier and; ¢ teedhack forcing with two flow-dependent constants
f|ct|t|ous_ domal_n.metho.d was also devel_oped fgr simulating s normally to represent a solid body. The interpolation
the motion of rigid particles suspended in a fli}5]. The _procedure for computing the momentum forcind 1] was
§tructured and regullar mgshes over an extended iM§Ren improved by Kimet al. [15] using a linear or bilinear
independent domain including the regions occupied by th%terpolation scheme and Gilmane¥ al. [16] with the re-

particles were used to avoid repeated remeshing. The oy sty ction algorithm using an unstructured triangular mesh
erning equations for the fluid were solved everywhere in th or satisfying the no-slip conditions on the geometrically

do.main and_ thg motion of the rigid pa_rticles was enforce omplex immersed boundaries. The flow past a solid sphere
using .the distributed Lagrange multiplier method, whereas, \j some other particulate flows have been well predicted by
t.h‘? f|n|§e—element method is generally more intricate th.an Nehese improved immersed-boundary methods. Recently the
finite-difference method and the continuity equation is NOYyice Boltzmann method has also been applied to simulate
easy to be satisfied for incompressible fluids. the particulate, especially multiparticle floWs7,18. Feng

Ryskin and Lea[7] provided a method for the genera’;ion. and Michaelides[19] combined the lattice-Boltzmann

of an orthogonal boundary-fitted coordinate system, which I$hethod and the immersed-boundary methibé] to compute
found to be very efficient in the solution of some free bound-y, . <adimentation of single and even 1232 spheres success-
ary problems with a deformable gas-liquid or liquid-liquid ¢, in  three-dimensional coordinates. Kajishima and
interface [8-10] and of viscous flow past solid spheres ;o chif20] applied a direct numerical simulatid®NS)
[11,13], with good accuracy in enforcing the boundary CON-phased on a two-way-coupling finite-difference scheme for
dition. However, it is very difficult to construct the orthogo- 1« simulation of the motion of solid particles through the
nal curvilinear coordinates for complicated and seriously de;,..oquction of the volume-weighted average velocity close

to the solid-fluid interface.
Fedkiw and co-worker§21-25 designed the ghost fluid
*Electronic address: chaoyang@home.ipe.ac.cn method(GFM) coupled with the level set approach and ap-
"Electronic address: zsmao@home.ipe.ac.cn plied an “isobaric fix technique” to avoid a smearing jump of

The immersed boundary method is also a useful algorithm
simulating particulate flows by representing the role of
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numerical quantities across the interface and to get continisubdomain occupied by the particle taken as a fictitious one.
ous profiles for the density, viscosity, pressure, entropy, anth this paper, we attempt to utilize the advantages of the
velocity across the interface. This method combines algorithm—namely, the mirror fluid method—to give a com-
Lagrangian code for tracking the interface with a Eulerianparatively robust and accurate finite-difference scheme for
scheme for advancing the fluid by populating cells next tosolid-liquid flows by solving the governing equations of the
the interface with “ghost valuese.g., by extrapolation tech- flyid phase without using thé or Heaviside functions. The
niques. A “ghost cell” is defined everywhere in the compu- motion of rigid solid particles in the laminar flow regime is

tational domain qnd each node is designated values _of Varﬁumerically simulated and compared with the reported ex-
ables for real fluid and ghost values for the other fluid thatperimental data to validate the new algorithm.

does not really exist at the point. The GFM coupled with the
level set approach was originally developed for multiphase

compressible flowf21], then extended successfully to treat Il. MATHEMATICAL FORMULATION
shocks, deflagrations, detonations, and two-phase incom- _ _
pressible flames and floW22-25. A. Governing equations

Although significant efforts have been made to model
multiphase flow, its numerical simulation is not fully suc-
cessful and very often semiempirical methods have to b
resorted to. Since the solid-fluid interfaces are translate
along with the motion of particles and the coupling betweer‘h
the particles and fluid with jump interface conditions is
rather complicated, the problem of simulating the unstead
motion and interaction of solid particles with a fluid is still
very tough for presently available computational fluid dy-
namics methods. The level set approach and other numeric
methods have been applied successfully for gas-liquid an
liquid-liquid flows, typically by using & function or Heavi-
side function to couple the governing equations of the two

The unsteady motion of a solid particle in a Newtonian
liquid is considered as a typical example for the validation of
e mirror fluid method with following assumptiongl) the
uid is viscous and incompressiblg) the physical proper-
es of the fluid and solid are constari8) the two-phase
solid-fluid flow is axisymmetric or two dimensional, afd)
¥he flow is laminar.

The velocity u(x,t) and the pressur@(x,t) subtracted,
me contribution of gravity in the fluid are governed by the
ontinuity and Navier-Stokes equations in the following
orms:

phases. As thé or Heaviside function formulations are ap- V-u=0, (1)
plied for computing the Navier-Stokes equations, the numeri-

cal smearing of density, viscosity, or pressure across the in- au

terface will arise and some source terms for modeling the pf(E +u-V u) =V .o, (2)

surface tension need to be added. However, these methods

cannot be directly extended to solid-fluid systems for it is _ ) _ ' . .
very difficult to assign suitable surface tension to soIid—fluid""h_er?pf s the Qensny of the fiuid andis the time. Since the
interfaces. fluid is Newtonian, the stress tensertakes the form

Inspired by the fictitious domain methd®,4] and the
ghost fluid method21], it is proposed that the domain of o=-Pl+7, 3
solid particles is assigned suitable flow parameters., ve-
locity and pressudeso that a surface segment is eventuallyin which 7 is the stress tensor defined as
subjected to the correct shear and normal forces on the fluid
side of the segment. In this way, the sum of the real stress = u[Vu+(Vu)T], (4)
contributed by a real fluid and the fictitious stress hy the
mirror fluid (does not really existto the interface segment is where u; is the viscosity of the fluid.
kept zero, as if the segment is an artificial one immersed in  Suppose a rigid sphere with radiBsfalls by gravity in a
the fluid. Otherwise, an infinite acceleration with no physicalfluid. The equations of motion are nondimensionalized by
meaning will result onto the infinitely thin surface segmentintroducing characteristic scaled:=2R for length, V,
with zero mass. Thus, the solid surface seems just nonexisi:\szeg for velocity, L/V, for time, andpfvg for pressure and
ent and the whole domain including the real fluid and thestress.g is the gravitational acceleratiof®.81 ms?). In a
inside mirror fluid can be solved altogether by a set of equatwo-dimensional coordinate system, the equations for fluid

tions. At the same time, the mirror fluid should have thEmaSS and momentum conservation are then expressed in
same values of density and viscosity as the real fluid, and thesrms of dimensionless variables as
surface tension becomes irrelevant to the solution of the

Navier-Stokes equations. The problem of interface boundary ou 19

conditions including some jump conditions is thus replaced —+—-——(rv)=0, (5)
by that of specifying the fictitious parameters to the mirror gx 1oy

fluid in the solid domain. In comparison to other ways of

representing moving solids on a moving mesh, such as the ,, , ( 1 au) 19 ( 1 o7u) ap
finite-element method and the orthogonal boundary-fitted co- —+ —({uu-—— |+ —-——(rou—-r—— | =—-—,
ordinate method, a usual fixed Eulerian grid in this method is  7¢ 9% Nredx/ 1 dy Nre dy X
used for the fluid without the need of remeshing with the (6)
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av+a(u 1av)+1a<r rl&v) T ff( |+1~> dl“+771( s
—+t\w-———|+t-—|\fvo—-r—— —pa= - —7|-Nn ——(p2— ,
a6 ox NredX/ T dy NRe dy 6”2 ro P Nreo 6N, P2~ P9
_ap 10 (15)
=y Nt @ .
y Rel wherer is the dimensionless form of the stress tension de-

fined in Eq.(4), p, is the dimensionless fluid density and

wher(;a.rztl for dCarttlasEn c;c;rdilngtest,zt);]fcir cyllndrlcalt Iequal to 1,p, is the dimensionless density of the particle
coordinates, and curly brackets indicate the term present on ,=po/pr), and the Froude number is expressed Nas

in cylindrical coordinates, y, r, 0, U, v, andp are defined =V?/Lg. In two-dimensional coordinates the dimensionless
to be the dimensionless axial coordinate, radial or transverse = ~ : -
. ; . : . . Vectorsa andg can be written explicitly as
coordinate, radial coordinate, time, axial velocity compo-
nent, radial or transverse velocity component, and pressure, _ [a, du,/de
respectively. The dimensionless grodp, is the Reynolds a= = : (16)
a, du,/de
number and expressed as

LV, ~_ [ 9
Nie PiLVe _ (2R)1'590'5ﬁ. (8) g= <g ), (17)
Mt Mt 4
The rotating, tilting, and deforming of a rigid particle fall- WhereU, andg, are the dimensionless velocity and gravita-
ing in a Newtonian fluid are absent in an axisymmetric caselional acceleration of the particle in the axial direction,
Therefore, the motion of a solid particle with the density ~andUy andg, those at the radial or transverse directign

satisfies Newton’s law: Given another case of sedimentation of an elliptic solid
particle in a two-dimensional channel, the governing equa-
Ma=F+G, (9)  tions of rotation have to be included in the above equations.
The torque imposed on an ellipse by the fluid is given by
a:d_U’ (10) Fm:f (X=Xp) X o-ndl. (18)
dt TP
Then the angular velocity of the solid particle rotation and
_dxp the orientation angle: of the ellipse can be calculated by the
U= dt (11) following equations:
" . d
wherexp, U, anda are the position, velocity, and accelera- I—w =Fpn, (19
tion vectors of the particle. For a solid sphere, the mass of dt
the particle is
d
, 0= (20)
Mg= §7TR3ps. (12

wherel is the rotational moment of inertia of the particle.

F is the force vectors exerted on the particle by the fluid and
G by gravity: B. Mirror fluid method

The basic idea of the mirror fluid method is to take the
F= f f o-ndr, (13) whole domain as a Eulerian one for the fluid with a Lagrang-
Tp ian subdomain embedded; i.e., a solid-fluid flow problem
with geometric complexity domain is resolved on a larger
4 and regular domain, including a mirror fluid domain which is
_7 _ originally occupied by the solid. In this aspect, the mirror
6= SWRB(pS P19, (14 fluid method and the fictitious-domain methods have the
same advantages that a fixed and regular mesh can be applied
whereg is the acceleration vector of gravity. In E4.3), I's  for the entire computation without repeated remeshing or
is the surface of the particle amdis the outward unit vector using boundary-fitted coordinates. A simple finite-difference
normal to the particle surface. In addition, the no-slip condi-method used here instead of the finite-element method and a
tion is imposed on the solid-fluid boundary—i.a;=U—to  complicated weak formulatiof3,4]. The no-slip boundary
couple the governing equations of motion of fluid and thecondition is enforced implicitly on solid-fluid surface seg-
rigid particle, whereur is the velocity vector of fluid on the ments by mirror relations. Therefore, to make a surface seg-

fluid-solid interface. ment subjected to a zero net force, the key is to guarantee the
After the nondimensionalization of E() using the same shear rates across the surface be the same magnitude but with
characteristic scales for the fluid, we have opposite direction. This may be implemented by taking the
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FIG. 1. Schematic diagram of the solid-fluid interface for the
mirror fluid method.

inside fl in th bd . ied by th lid ticl FIG. 2. Sketch map of a typical mirror relation between the
Inside tlow in the subdomain occupied by the Solld partiCle, e in 4 solid particle and the corresponding mirrored nodes in a
(i.e., the mirror fluid domainas the flipped mirror image of real fluid.

the outside flow in the real fluid phase at the same surface
segment or, in other words, by rotating the outside flow field
(u=U) and pressure field by 180° around the surface seg-
ment(as shown in Fig. 1 X=Xg Y-VYp
Unlike the linear extrapolation of the ghost fluid method T o
[21,26], the flow parameteréu and P) are defined by the
mirror relations. Thus, the key step of the mirror fluid So the coordinates ok mirrored withB can be decided by
method is to accurately specify the flow parameters insidéolving the following equation set of Eq$25) and (26)
the mirror fluid domain, in which the variable value at eachcoupled with the constraint in E¢27):
node corresponds to that of a point in real fluid by the mirror

In Fig. 1, the straight line alongg passing througi is

(24)
Ny r]yB

relations. The following formulations are derived only in M:M, (25)
two-dimensional Cartesian or cylindrical coordinates for a N Nyg
single solid particle moving in a fluid as a typical example, ) ) )
while this is easy to be extended to a three-dimensional (Xa=Xa)“ + (Ya—Yp)“ = (2¢)°, (26)
space and straightforward to multiple-particle—fluid systems.

As depicted in Fig. 1, we can find the mirror location of Pads<0 (if gg=<0, thengy=0). (27

Alxa,yn) in the real fluid region corresponding to node g shown in Fig. 2, the points denoted by solid circle
B(xg,Yg) in the mirror fluid domain in terms of a distance symbols(A) are one-to-one mirror images of the nodes in a

function defined as in the level set approd@7,28. The  gq|id particle denoted by open circle symbé®. Then the
signed algebraic distance function denotedpabeing posi-  fititious velocity and pressure of nodin the mirror fluid
tive in the continuous fluid phase, negative in the solid,.o ptained easily:

phase, and zero at the solid-fluid interface, to facilitate the

mirror calculations. After the particle is advanced by a time Ug=—(Ua—U)+U=2U—-u,, (28)
step, ¢ can be redesignated with the known center position
of the particle. The unit normal vector to the interface in Egs. Pg=Pa. (29

(13 and(15) is denoted as Be aware that for a rotating solid particle, the velocity at the
Vo particle-fluid interface—i.e.]JJ—should be replaced by
nzw. (21) +wX(X—Xp).
Such specification ensures that the shear and normal
In two-dimensional Cartesian or cylindrical coordinates, thestresses on the two sides of the solid-fluid interface are with

above equation is expanded as the same magnitude but opposite direction. The density and
dplax viscosity of the mirror fluid are designated as simply equal to
] > > those of the real fluid. As shown in Fig. 1, in the mirror
= (nx) _ V(9 plax)= + (9 pldy) (22)  relation the extension of velocity across the curved solid-
ny dplay fluid interface is continuous. The updated velocity field re-
V(0 plax)2 + (9l ay)> mains continuous across the particle surface; i.eggfis

unlimitedly close to zeroup,=U can be derived from Eq.
and can be calculated at the nodes immediately close to th@8). Therefore, if theu at $=0 (interface is essentially the
solid-fluid interface. So the unit normal vector passingconstantU within numerical error, then the sphere remains

throughB to the interface is thus calculated: nondeformable and the no-slip boundary condition is auto-
n Vo matically satisfied. In this way, we can update the fluid ve-

”B:( XB) = <—> . (23) locity field including the mirror fluid by the Navier-Stokes

Nyg |Vél/g equation(2) at every node in the entire computational do-
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TABLE I. Comparison of the relative error between the mirror :
fluid method and the method i26]. Ep is for Poiseuille flow at S R | A5 (U
x=0 andEc for Couette flow atr=4.0 mm. !

V
Grid spacing 1 mm 0.5 mm 0.25 mm _8 W%

Ep Yokoi [26] 2.16x102  1.03x102 4.67x10°%
This work ~ 8.35<107°  1.99x10°% 5.43x10™* K k s
Ec Yokoi [26]  3.75x1072 2.00x102 1.23x107? S ES N 1 SN SN PR
This work  1.79<102 6.50x10°% 2.81x1073

FIG. 3. The control volume ofi at nodew.
main with the solid-fluid interface boundary condition en-

forced implicitly. The motion of the solid particle is then
computed by Eq(9) using a Lagrangian scheme. Thus, Or‘eplicitly to make the solid-fluid interface boundary conditions

can compute solutions to solid-fluid two-phase flow prob- ) . . .

lems replaced by solving two single-phase flows. Last, it ienforced. A linear interpolation procedure with lower than

noted that only a band of several mirror nodes close to th econd-order accuracy 1S usua}ly adppted and a substapual

interface is actually necessary by this novel algorithm. AII.aSk for cqmputmg the intersection points ”eé!rby the moving
Qterface is usually needed. [f20], another interpolation

the nodes in the particle domain whose neighbor nodes ar thod by th i iahted loved t
all in the same domain are actually irrelevant to the solutio ethod by the volume-weighted average was employed 1o
termine the velocity in the interface field. All the above

z;dpg?;nlk()ae[lzagcked out from the computation as Squestelnterpolation schemes are based on the assumption that the

In [26], the ghost fluid methof21] was used to impose velocity across the boundary is linear. However, the mirror

the boundary condition of velocity on a solid object without fluid relations rather than interpolation introduced in this
including the pressure boundary condition. A distance funcWOrk need no sucha priori assumption. Moreover, the

tion ¢ (i.e., level set functionwas also defined to track the ﬁo.l:jnda% ((;jom_jtlrt]lonts ar:_nphmttlr)]/ sar?sf!edl in the trmrr%r |
interface, and the ghost velocity in the solid domain was uid me Ot' Wi 9#1 mod |fy|rt19 N pf ysica mt?]m(;an um ?_b
estimated by a linear extrapolation and usually,  2NC€ €quations. ihe advantages of our method seem fo be

#|ihghosl. BUL in the mirror fluid method we sethy =l compensated for somewhat because a few iterations on the

and use a definite one-to-one mirror relation: thus, the locaMimor relations are needed for each computational time step,

tion of A in the fluid mirrored withB in the solid can be Whe_n th_e _so_lid body velocity is also part of the solution for
easily found by solving the explicit formulation of Eq25) the implicit time schemésee Sec. Il C 2

different forms is added to the Navier-Stokes equatiexs

and (26) instead of the more cgstly iteration equation C. Computational scheme
duldtgxn-Vu=0 with Courant-Friedrichs-Lewey(CFL) . )
number>1. In[26], only a first-order accuracy for the itera- 1. Method for numerical solution

tion equation was obtained. Even a high-order semi- The control volume formulation with the power-law
Lagrangian scheméhe CIP methoflwas adopted, so the scheme described by Patanka#] is adopted to solve Egs.
accuracy of all numerical simulations is first order. In fact, if (6) and(7) for the fluid. A typical control volume for velocity
we chooseyia| =|¥gnost: EQ.(7) in [26] is equivalent to EQ.  component in thex direction in a staggered grid is denoted
(28) of this paper. by the shaded area in Fig. 3. Equati@ is integrated over

In order to further compare the difference of both meth-the control volume centered &t and an algebraic equation
ods, the same numerical samples—i.e., two-dimensiongbr the central nodev involved with four neighboring nodes
Poiseuille and Couette flow problems—are computed by the f g, andh is obtained. The momentum equation for
mirror fluid method. The relative deviation is also definedyelocity component is handled in a similar manner. In or-
as E=|Ugim—Ueyacl/ [Uexacl- The theoretical solution of the der to improve convergence and reduce solution costs, the
Poiseuille flow iSUeyac= (1/2u)(-dp/ dy)(ax—x?), whereais  gimpLE algorithm[29] is adopted to compute the velocity and
the wall width(0.52=3.8 mm). The exact solution of veloc- pressure fields. The discrete momentum and pressure-
ity for the Couette flow isuey e~ wr, Wherew is a constant  correction equations are left out for conciseness of this paper.
angular velocity of rotatiofw=1.0 1) andr is the radius In order to ensure variables more accurately interpolated
(the radius of the cylinder is 4.3 mmAs shown in Table I, and revolved, a double fine grid detailed by Yang and Mao
for a flat boundary(Poiseuille flow, the computational ac- [27] is applied. When the motion of a bubble or droplet was
curacy of velocity for the mirror fluid method is nearly sec- simulated by a level set approach the inevitable “parasitic”
ond order and between first and second order for a curveslurface currents that arise from errors in the surface force
boundary (Couette flow, both being better than the first- calculation were suppressed by this improvem@]. As
order accuracy if26]. Since the divergence-free condition depicted in Fig. 3, the coarse-grid cells are shown with solid
can be satisfied more easily, a higher accuracy is obtained fdines and the double fine-grid cells are demarcated by both
the Poiseuille flow. solid and dashed lines. If |, XN, grid is used for the ve-

It is necessary here to comment on the immersediocity and pressure solution, aN2x 2N, one is used fokp
boundary methoi14-16,19, by which a body force term in specification.
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As suggested by Figs. 1 and 3, the solid-fluid surfBge with any node(B) in the subdomain occupied by the solid
consists of surface segments formed by the intersection qdarticle through solving the equation set of E¢®5) and
the particle surface with the grid lines, and the evaluation(26). Obtaing,, U, andP, by interpolation and assign val-
of surface forces may be done by integration over thesaes ofu, and P, outside the particle to the mirror fluidig
segments. For this purpose, the location and variables and Pg) inside the particle with the surface values as the
two end pointsi andi+1 of segment are determined by pivots by Eqs(28) and(29).
linear interpolation between grid nodes. In two-dimensional Step 4 Solve the mass and momentum conservation equa-
Cartesian or cylindrical coordinates, the dimensionless forcé@ons of fluid in the whole domain by theimPLE algorithm

vector F imposed on the particle by the fluid stress can bewith the interface boundary condition implicitly enforced by

integrated along the solid-fluid interface as the mirror fluid method.

Step 5 Calculate the total drag force &f exerted by the

< &U> 1 <5U 19_0) liquid on the particle and the body force Gfby the external

NReax Mt Nre\ dy — dx T field. Then calculate the acceleratiarby solving the force

f L o dv 2 o dr balance Eq(9) of the particle.

( ) n,+ ( p+— ) Step 6 Estimate the particle velocity” at the end of

Nre ay 2 Nredy current time step according to the new acceleration value:
= f f Edr, (30) U"=Up+ 3(ag+a)At. (36)
r

Step 7 CompareU” and U. If U"=U (meaninga=ay),
where the vectoE is the average of the stress at two ends ofand go on to the next time step of the simulation. If not
segmeni when Eq.(30) is applied for surface integration of equal, go back to step 2 with suitably adjusteg typically
fluid stress—i.e.E=(E;+E;;1)/2. The surface area element as

AT in discrete form is
a(()n+1) _ aOn) + (a n)), (37)

UEhAl V(Xis1 = %)? + (Yisr — VD)2 (31) until the value ofU converged during the iteratiortse., U

2 approaches a convergent valul the solid particle rotates,
If the grid is adequately fine, the error of integrated forcesuse the converged velocity field and U to calculate the
would be acceptable. A similar integration method is alscangular velocityw and orientation angle of the particle by
applied to calculate the torqug,,. Egs.(18), (19), and(20).

The dimensionless time steyd must satisfy the Courant- Step 8 Move the particle center to a new position with the
Friedrich-Lewy conditions and also the restrictions due toconverged surface velocities and respeacffyof fluid and
gravity and viscous terms to make the numerical proceduréolid particle. Keep the andP values for nodes in the fluid

ATl'=

stable and convergef28,30: and discard these in the particle according to the renewed
signed distance functiogh.
AG, = ithR (P( ) (32) Step 9 Let Uy=U, up=u, ag=a, wg=w, and e¢g=a, and
eM (x) repeat steps 2—8 for the next time step.
IIl. NUMERICAL RESULTS AND DISCUSSION
Af.=min | | (33

To demonstrate and validate the applicability and robust-

ness of the above-mentioned numerical algorithm, we con-
A#=0.5min(A6,,A6,), (34  sider an impressible Newtonian fluid bounded in an ad-
equately wide cylindrical column with free-slip boundary
conditions imposed at the column wall and a rigid spherical
particle that moves freely in the fluid. Typically we solve the
2. Numerical procedure solid-fluid flow in a computational domaif@={(x,y)|0=<x
<45R, 0<y=<36R} to assure no wall effect. In case of par-
ticle rotation, the sedimentation of an elliptic particle in a
two-dimensional channel is simulated.

whereh is the mesh size of velocity-pressure grid and usu-
ally we takeAx=Ay=h.

By the mirror fluid method, the main calculation steps of
solid-fluid flows are summarized as follows:

Step 1 Initialize the flow field(u,U,P),a,w, «, physical
parametergdensity and viscosily and ¢ as the signed nor-

mal distance to the interface. A. Convergence test
Step 2 Assume the velocity of the solid particle heat A number of numerical experiments with different particle
the end of a time incremerit: radius, viscosity, and density in wide range of Reynolds
U = U + agAt (35) number in axisymmetrical and laminar two-phase flow are

carried out. The effects of grid on calculated velocities of the

whereU, anda, are the velocity and acceleration of the solid spherical particle and fluid are presented in Figs. 4, 5, and 6.
particle at the end of the former time step. Grids of 50x40, 100x 80, 150x 120, 200x 160, 250

Step 3 Calculate the locatiof®) in the real fluid mirrored X 200, and 30 240 are used to test the convergence of the
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~ FIG. 4. Grid independence test: dimensionless velocity of par-  FIG. 6. Coefficient of the variation of the axial velocity)
ticle as a function of dimensionless timéR=0.21 mm,p;  versus dimensionless time with different computational gtitie
=1000 kg m?, ps=2000 kg m3, u=1.0x103Pas3. same simulation conditions as in Fig). 4

particle motion as a function of timesee Fig. 4. Figure 5
depicts the distribution of interfacial velocity along the par-
ticle surface against the azimuthal anglemeasured from

the calculated interfacial velocity from the ideal value as
the particle rear stagnant point. The real axial velocity is a

shown in Fig. 6.Cy is defined as
constant at the whole surface, and the simulation velocity

component shows certain fluctuations. We use the coefficient
of variationC,, to characterize quantitatively the deviation of

1
020 | =¥ 50x40 —&-100x80 —&—150x120 Cyv= 12 (w; = _)2 (38)
% 200x160 —8-250x200 —— 300x240 |‘[ n=21i,
S wherew; is the interfacial velocity either in axial direction
_§~ (u) or in radial or transverse directidi) at every intersect-
< ing point of the particle surface with the grid lines, and the
g average velocityv with total numbem of interfacial veloci-
kS ties is computed by
5 i’
b J—
= W= W (39
| Ni=1
060 +———T T+ T+ T ——T7— We can find the simulation velocities at the solid-fluid inter-
0 30 6 % 120 15 180 face gradually approach to constant values with the increase
(@) B (degree) of the total number of nodes. The constant velocitgt the
curved solid-fluid interface also validates the proposed mir-
T 0 o 10080 = 150,120 ror relation can guarantee the no-slip condition and no defor-
| = 200x160 —@-250x200 — 300x240 mation of the rigid particle.

0.08 7 Table Il compares the predicted Reynolds numbers

; 006 (NRes ) of the sphere at steady-state motion V\m[g cal-
8 culated from a correlation recommended by Cluaft al.
§ 0.04 —
§ TABLE Il. Convergence studythe same simulation conditions
“§ 0.02 | as in Fig. 4.
RS
0.00 +ung Grid N;esim N;ecm D Cyofu GCyofuv
oo 50x40  22.03 1855 18.76%  5.79%  3.49%
0 30 60 90 120 150 180 75X 60 20.37 1855  9.81%  4.01% 2.59%
(b) B (degreq 100x80 1971 1855  6.25%  3.02%  2.06%

FIG. 5. Profiles of the dimensionless interfacial velocity along 1°0%120 ~ 19.14  18.55  3.18%  2.02%  1.45%
the particle surface with different computational gridse same ~ 200x160  18.82  18.55 1.46%  1.51% 1.11%
simulation conditions as in Fig.)4(a) Interfacial velocity at axial 250x 200 18.62 18.55 0.38% 1.20% 0.90%
direction(u). (b) Interfacial velocity at radial or transverse direction  300x 240 18.57 18.55 0.11% 1.00% 0.76%
(v).
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1000 = TABLE IlIl. Comparison of the Reynolds numbers of solid
100 -] particles.
10 < * *
3 1_ No Resim Nre,,, D
§ 6.695x 1073 2.887x 10 2.789x< 104 3.51%
3 M7 2.259<10°2  9.599x107%  9.413x107%  1.98%
5 oo 5.356x 1072 2.209x 1072 2.231x10°° -0.986%
= o004 0.1046 4286103  4356x10°  -1.61%
0.0001 0.3530 1455102 1469102  -0.953%
1B e — 13.08 0.4969 0.5163 -3.76%
0001 001 01 1 10 100 1000 1E+4 1E+S 44.13 1.522 1.555 —2.12%
Np 64.24 2.110 2.131 -0.985%
104.6 3.406 3.255 4.64%
FIG. 7. Plot_ of the ngnolds number agaiiNg for the r?éntion 353.0 9.129 8.667 5.33%
o o gs'cr’;‘flr';":"zl_girtl'g% F(,Z;)ﬂ mm. pr=1000 kg M= ps 836.8 17.13 16.55 3.50%
968.7 18.52 18.55 -0.162%
(Table 5.3, p. 114[1]. The real Reynolds numbN};e of the 1.947x10° 30.90 3L.41 ~1.62%
particle is defined as 2.175x 10° 34.73 34.07 1.94%
2.824x10° 40.75 41.14 -0.95%
NG = psLU (40) 3.116x 10° 43.67 44.13 -1.04%
Re™ g 3.591x 10° 49.49 48.78 1.46%
whereU is the real terminal velocity of the spherical particle 448510 °6.22 20.98 ~1.33%
The correlation for 12.2 N*Res 6.35x10° and 580 5.516x 10° 65.98 65.70 0.426%
<Np<1.55x% 107 is given by 5.969% 10° 69.26 69.33 -0.101%
9.532x 10° 97.00 94.83 2.29%
l0g10 Nge=— 1.81391 + 1.34674 - 0.1242A2 1.308x 10* 120.6 116.6 3.43%
+ 0.006344\3, (42) 1.740x 10* 146.7 140.0 4.79%
2.259x 10* 177.1 165.0 7.33%

whereA=log;o Np and the dimensionless numhbdg is

Np = ing|Ps‘ pf|gL3. 42) B. Comparison of the Reynolds number and drag coefficient
3ui In this section, we compare the predicted Reynolds num-
For other two ranges oNp, the correlations that will be bers and drag coefficients of falling spherical particles in
involved in the following sections are stagnant fluid with the experimental data to examine the ro-
bustness of the novel mirror fluid method. As shown in Fig.

+ _Np A2 -_ 7 and Table Ill, the numerical simulated Reynolds numbers
Nge= 7, = 1.7569X 107"Np + 6.9252X 10 'Np = 2.3027  of falling particles are in good agreement with the values

24
calculated from the typical empirical correlations of Egs.

X 107Ng, (43)  (41), (43), and(44) proposed by Clifet al.[1] with relative
. deviation mostly below 5%. As shown in Fig. 8 and Table
used for the range dfiz,<2.37 andN\p <73, and IV, the comparison of drag coefficients of a sphere in steady-

state motion is also rather satisfactory. The values of drag
coefficientCy .., are calculated from three experimental cor-
relations also recommended by CEftal. (Table 5.2, p. 11p

10g;0 N = — 1.7095 + 1.33438 - 0.115912,  (44)

for the range of 2.3% Ng,<12.2 and 73 Np=<580. The i
relative deviation between the predicted Reynolds number bgrl]'
the mirror fluid method and the value from correlati@)
and(43), or (44) is calculated by 3 24
Cd:]__6+N_*, if NRe< 0.01, (46)
D= (NR%im_ NR%)/NRecor X 100 % . (45) Re
As the grid is refined, the deviation of the Reynolds num-
ber of the spherical solid particle at steady-state motion de- _ 24 * 1 (0.82-0.05 logg N
creases graduallysee Table N and a grid with 25 200 Ca= N*Re[l +0.1318NgJ o],
nodes is sufficient for spatial computational accuracy and is ) .
adopted for the subsequent simulations. if 0.01 < Nge= 20,

(47)
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1E46 the value from the above correlations is calculated by
D.= (Cd,sim_ Cd,cor)/(-\'dd,cor X 100 % . (49

The numerical simulation results @ i, coincide with
Cy.cor rather well except the cases¥.> 100, for which the
relative error is about 10%. A similar trend is observed for
the comparison of Reynolds numbers of falling particles with
different radii. In[4] (Tables 8.3—8.%5 Glowinski et al. have
E also simulated the motion of a ball falling in an incompress-
1 i, ible viscous fluid by a fictitious domain approach and the
3 —— clift et al. correlation [1] finite-element method and compared with the experimental
ot B IR I IR AL L I data from Clift et al. [1]. The relative errors of terminal

00001 0001 001 01 1 10 100 1000 velocities for Reynolds numbers of 38.1, 78.3, 84, and 118
Reynolds number are 12%, 17%, 13.4%, and 15.2%, respectively. The possible

feason for the larger prediction deviation from the experi-
mental data is that the solid particle may oscillate at high
Reynolds numbers, typically when the Reynolds number of a

1E+5 -
1E+4 ]
1000

100 -

Drag coefficient

10

FIG. 8. Plot of the drag coefficient against Reynolds number o
a falling spherical particldthe same simulation conditions as in

Fig. 7).
9.7 falling sphere is about larger than 130. In this case, the axi-
o4 symmetric assumption is not suitable and three-dimensional
Cy= = [1+O_1935N;8)0.6305], if 20 < N;{e$ 260. simulation should be performed for more accurate predic-

Re tion.

(48)
C. Comparison of the wake length
The relative deviation between the predicted drag coefficient Besides the investigation of the drag for the motion of a

-4 -2 -1 o _ i i . . . . .
(Cqsim=3L9U %01 ps=pr|) by the mirror fluid method and rigid particle in a fluid, the flow pattern at different Reynolds
_ N ~ numbers has also been concerned and the wake length is one
TABLE IV. Comparison of the drag coefficients of solid of the important parameters to characterize the solid-fluid

particles. flow.
- The velocity field around a falling solid sphere computed
Nre,, Cd,sim Ca,cor Dc by the mirror fluid method is shown in Fig. 9 as a typical
2 887% 1074 8.031x 10° 8.312x 10* _3.38% exampl_e. The velocity vector map in _Fi_g(a@ is plott_ed in
- 4 . o 2 500X 10¢ 1.92% the stationary frame, but tha'; in Figik9 is in the _coordmates
9.599x10° 2.452x1 fixed at the center of the falling spherical particle, where the
2209<107°  1.097x10°  1.086x10" 1.01% wake behind the particle is obvious. According to the veloc-
4.286x10°° 5.694x 10° 5.600x 10° 1.68% ity field in Fig. 9, we can also explain the reason of the
1.455x 1072 1.668x 10° 1.654x 10° 0.846% fluctuation of the interfacial velocity along the particle sur-
0.4969 52.96 51.84 2.16% face as shown in Fig. 5. The interfacial velocity of the node
1.522 19.04 18.68 1.93% nearby the rear of the particle is close to a constant value for
2110 14.43 14.10 2 34% the nearly same magnitude of velocities of the neighboring
nodes. However, the velocity gradients at the interface nodes
3.406 9.017 9.497 -5.05% .
near to the front nose of the particle are much larger than
9.129 4.236 4.535 ~6.59% other nodes, so the corresponding interfacial velocities at
17.13 2.853 2.990 -4.58%  these nodes fluctuate relatively seriously.
18.52 2.823 2.847 -0.843% Figure 10 presents the computed stream function contours
30.90 2.039 2.084 -2.16% around the falling particle with different Reynolds numbers
34.73 1.804 1.943 -7.15% reaching steady state at sufficiently Iar@eWhenN",;e is very
40.75 1.701 1.769 3849  low (18.52, the flow around the particle is perfectly laminar
4367 1634 1.700 ~3.88% and no vortex ring appears in the Wf';\ke. As the Reynolds
49.49 1.466 1583 7 39% number is llncreased, the stream function contours at the rear
56.22 1'419 1'475 —3.80% of the particle become more flexuous. WHg s 69.26,
65.98 1.267 1'351 6.220/ the circulating vortex emerges in the neighborhood of the
: : : T0.££70 rear stagnation point. With the further increase of the Rey-
69.26 1.244 1.317 -5.54%  nolds number, the vortex ring grows in size and becomes
97.00 1.013 1.104 —8.24% more and more elongated.
120.6 0.8998 0.9894 -9.06% In Fig. 11, the wake lengths at different Reynolds num-
146.7 0.8087 0.8988 ~10.0% bers obtained from the simulations by the mirror fluid
177.1 0.7200 0.8212 —123%  Method are compared with Taneda’s experimental it

The agreement seems satisfactory except the cases of very
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FIG. 9. Velocity field around a falling sphere
=1.740x 10%, N*Resim: 146.7,60=21.09.

in a fluidlp

high Reynolds numbers when the zigzag motion of falling

particles with an unsteady wake needs to be dealt with three-

dimensional simulation. The predicted wake lengths are als
very close to the simulated results by Mao and Ch&?)
using an orthogonal, boundary-fitted coordinate system.

D. Sedimentation of an elliptic particle with rotation

To further evaluate the reliability of the mirror fluid

PHYSICAL REVIEW E71, 036704(2005

FIG. 10. Influence of the Reynolds numbefd,,) on stream
function contour maps for the motion of a rigid sphere in a flgl.
Np=968.7,Nge =18.52,0=18.05. (b) Np=5.969x10%, Ngq
=69.26,0=13.44.(c) Np=1.740x 10, N;%im: 146.7,0=21.04.

elliptic particle with the aspect ratiB,/R,=1.5, whereR, is
the major axis andr, the minor axis, rests initially at the
channel center and the major axis tilts 135° with respect to
the horizontal direction. For the close wall sedimentation, the
width W of the channel is 5 times the length of the major
axis. The inflow boundary of the computational domain is
placed 3®, ahead of the ellipse and the outflow boundary is
40R, behind the particle. I15], the orientation angle and
trajectory of an ellipse with two Reynolds numbersl‘tﬁ{e
=0.31 andNg,=0.82 were simulated directly using the
Galerkin finite-element method and an arbitrary Lagrangian-
Eulerian moving mesh technique. The authors found that in a
narrow channel the lubrication pressure turns the ellipse ver-
tical and executes a damped oscillation as it drifts to the
channel center for the case of lower Reynolds nunibgg,
=0.31), while for the case oNg,=0.82 the stagnation pres-
sure dominates and the ellipse turns horizontal as it migrates
to the channel center.

In this computation, a nonuniform grid with 8297
nodes is adopted. As shown in Fig. 12, very reasonable

1.50
X Mao and Chen simulations [12] x
] A
120 | O Taneda experiments [31]
| A This work
0.90 —
3
~
0.60 —

° W,
0.30 H ii
0.00 T T T T T T

20 40 60 80 100 200 300

Reynolds number

method, a single ellipse settling in a Newtonian fluid under

gravity in a two-dimensional vertical channel is simulated
under the same conditions as used by Huanhgl. [5]. The

FIG. 11. Comparison of predicted wake length with experimen-
tal data(L,,=S/L).
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070 ® Huang ctal. (5] Re 031 entire computational domain as a fixed Eulerian one without
° g;“['{‘g]‘*;:l;gl"ﬁ-82 using a body-fitted coordinate system and assign suitable
+ Qi[17] Re=0.82 flow parameters to the solid particle domain by mirror rela-
0.60 " Predicted tions to ensure the surface segment subjected to zero net
shear and normal forces and the fluid-solid boundary condi-
& . tions enforced implicitly; meanwhile, the motion of solid
N s % particles is calculated using a Lagrangian numerical scheme.
o, This algorithm has the advantages of solving multiphase
flow by a set of coupled equations, eliminating smear of
density and other variables profiles across the interfaces, us-
0-40 ing a simple finite-difference method for discretization and
adopting a fixed Cartesian grid without need of remeshing.
o 5 10 15 20 25 30 35 A number of numerical examples were studied in a two-
xX/w dimensional coordinate system. TePLE scheme and the
250 _control vo_Iume formulatior_l are usec_i for solvir_lg the govern-
© Huang etal. [S] Re =0.82 ing equations for the motion of a rigid spherical or elliptic
; . O a0 particle in a fluid. The Reynolds number, drag coefficient,
200 o }?‘ie[dligeﬁewsl and wgke Iengt.h of real spherical particles are well predicted
o as verified against the acknowledged experimental data. The
g 1 #30° orientation angle and trajectory of an ellipse settling in a
¥ 50 fluid are also well predicted as compared with the reported
] simulation results. These numerical tests indicate that the
13 mirror fluid method is simple, robust, and effective in simu-
100 — lating real solid-fluid flows.
® oeo The mirror fluid method can be extended to other more
1 challenging particle flow problems with less restriction, es-
0o pecially When complicated and irregular_ solid-fluid ir_1ter-
0 5 10 15 20 25 30 35 faces are involved. In future work, we will use the mirror
xw fluid method to compute the effects of irregular side walls,

. _ _ ~motion of other nonsphericdke.g., slendersolid particles
FIG. 12. Comparison of the predicted trajectdffW and ori-  \ith rotation or tilting in a Newtonian or non-Newtonian
entation anglex of an ellipse with the results of Huar® al. [S]  fiq. Extension to simulate three-dimensional solid-fluid
and Qi[17] (X is the displacement at the gravity or vertical direc- 1,y ot high Reynolds numbers will also be tested for further
tion andY at the horizontal directign validity and application of this novel numerical algorithm.

agreements of the particle orientation angles and trajectories

between the mirror fluid method' apd the finite-element ACKNOWLEDGMENTS

method by Huangt al. are found. Similar simulated results

by the lattice-Boltzmann methodl7] with a finer grid of This work is supported by the National Natural Science

101X 700 are also compared in Fig. 12. Foundation of Chin&@Nos. 20236050 and 2010601#&nd the

National Key Basic Research and Development Program
IV. CONCLUSIONS AND FUTURE WORKS (No. 2004CB217604 The authors are also very grateful to
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